Skip to contents

All functions

add_api_key_header()
Adds API key header to the qdrant connection for security
add_context()
Adds context to be used by the model when answering
add_tools_declaration()
Add tools declaration for the LLM to use
add_vision_capability()
Add vision capability to the workflow.
add_workflow_step()
Add a step (i.e. another workflow) to an existing workflow
ai_workflow()
Define AI workflow
apply_processing_skill()
Applies a processing skill to the current workflow
convert_batch_documents_to_embeddings()
Convert Batch documents to Embeddings
convert_embeddings_to_qdrant_format()
Convert embeddings to Qdrant format
convert_ollama_completion_response_to_tibble()
Convert an ollama server completion response to a tibble
convert_ollama_model_info_response_to_tibble()
Convert ollama response for model info to a tibble
convert_ollama_tags_response_to_tibble()
Convert an ollama server tags response to a tibble
create_custom_processing_skill()
Create a processing skill template file that can be used to create your own skills
display_intermediate_answer()
Display Intermediate Answer
execute_workflow()
Execute an AI workflow
execute_workflow_on_df()
Execute an AI workflow on a dataframe (with or without a pipe)
extract_snippets()
Extract Snippets
generate_document_embeddings()
Get embeddings for a piece of context through an ollama server instance020
generate_numeric_list()
Generate Numeric List
generate_uuid_from_text()
Generate UUID from text
get_list_ollama_models()
Get a list of models available from the ollama server
get_ollama_chat_completion()
Get chat completion from ollama server
get_ollama_completion()
Get a completion from ollama server
get_ollama_connection()
Define a connection to a local ollama server
get_ollama_embeddings()
Get embeddings for a piece of context through an ollama server instance
get_ollama_model_info()
Get information about one ollama model
get_qdrant_connection()
Get Qdrant connection
inspect_processing_skill()
Inspect a specific processing skill
list_global_functions()
List global functions
list_processing_skill_parameters()
List extra parameters for a given processing skill
list_processing_skills()
list the processing skills
load_context_embeddings_from_feather_files()
Load Context Embeddings From Feather Files
load_workflow()
Load workflow
make_cosine_similarity_matrix()
Make Cosine Similarity Matrix
parse_json_result()
Parse JSON answer from the LLM
process_prompts()
Process Prompts starting from a workflow
pull_final_answer()
Pull Final Answer
qdrant_check_collection_existence()
Qdrant: Check collection existence
qdrant_check_connection_validity()
Qdrant: Check if the Connection is valid
qdrant_create_new_collection()
Qdrant: Create new collection
qdrant_delete_collection()
Qdrant: Delete collection
qdrant_delete_points()
Qdrant: Delete points (vectors)
qdrant_get_collection_details()
Qdrant: Get collection details
qdrant_list_all_collections()
Qdrant: List all collections
qdrant_retrieve_point()
Qdrant: Retrieve a specific point (vector)
qdrant_search_points()
Qdrant: Search points (vectors)
qdrant_upsert_points()
Qdrant: Upsert points
request_json_answer()
Request JSON answer from the LLM
retrieve_similar_vectors()
Retrieve Similar Vectors
save_workflow()
Save workflow
set_audience()
Define a specific audience you want the model to prepare an answer for
set_connector()
Set the connector required to operate the workflow.
set_current_time_and_date_reference()
Set the current time and date as addition reference
set_custom_processing_skill()
Set a custom processing skill (that you created) to give to the workflow.
set_default_missing_parameters_in_workflow()
Set Defaults for missing workflow parameters
set_embedding_model()
Set the embedding model to be used by the workflow
set_frequency_penalty()
Set the frequency penalty of the model used by the flow.
set_ip_addr()
Set the IP Address required to connect to an API server.
set_mode()
Set the mode of the model used by the workflow.
set_model()
Set the LLM model to be used by the workflow
set_n_predict()
Set the number of tokens to be predicted (maximum) by the flow.
set_num_ctx()
Set the length of the context to be handled by the model
set_overall_background()
Set overall background info for your model before an answer is formulated
set_port()
Set the port required to connect to the API server.
set_presence_penalty()
Set the presence penalty of the model used by the flow.
set_processing_skill()
Set the processing skill that you want to give the workflow.
set_repeat_penalty()
Set the repeat penalty of the model used by the flow.
set_seed()
Set the seed of the model used by the workflow.
set_style_of_voice()
Define a specific style of voice that you want the LLM to use when answering
set_system_prompt()
Set the system prompt to be used by the model.
set_temperature()
Set the temperature of the model used by the workflow.
split_text_as_paragraphs()
Split text into paragraphs
split_text_as_sentences()
Split text into sentences
switch_to_workflow()
Switch to workflow
test_llamacpp_connection()
Confirm connection to a Llama.cpp server is working
test_ollama_connection()
Confirm connection to ollama is working
write_vectors_to_feather_file()
Write Vectors to Feather File