Package index
- 
          add_api_key_header()
- Adds API key header to the qdrant connection for security
- 
          add_context()
- Adds context to be used by the model when answering
- 
          add_tools_declaration()
- Add tools declaration for the LLM to use
- 
          add_vision_capability()
- Add vision capability to the workflow.
- 
          add_workflow_step()
- Add a step (i.e. another workflow) to an existing workflow
- 
          ai_workflow()
- Define AI workflow
- 
          apply_processing_skill()
- Applies a processing skill to the current workflow
- 
          convert_batch_documents_to_embeddings()
- Convert Batch documents to Embeddings
- 
          convert_embeddings_to_qdrant_format()
- Convert embeddings to Qdrant format
- 
          convert_ollama_completion_response_to_tibble()
- Convert an ollama server completion response to a tibble
- 
          convert_ollama_model_info_response_to_tibble()
- Convert ollama response for model info to a tibble
- 
          convert_ollama_tags_response_to_tibble()
- Convert an ollama server tags response to a tibble
- 
          create_custom_processing_skill()
- Create a processing skill template file that can be used to create your own skills
- 
          display_intermediate_answer()
- Display Intermediate Answer
- 
          execute_workflow()
- Execute an AI workflow
- 
          execute_workflow_on_df()
- Execute an AI workflow on a dataframe (with or without a pipe)
- 
          extract_snippets()
- Extract Snippets
- 
          generate_document_embeddings()
- Get embeddings for a piece of context through an ollama server instance020
- 
          generate_numeric_list()
- Generate Numeric List
- 
          generate_uuid_from_text()
- Generate UUID from text
- 
          get_list_ollama_models()
- Get a list of models available from the ollama server
- 
          get_ollama_chat_completion()
- Get chat completion from ollama server
- 
          get_ollama_completion()
- Get a completion from ollama server
- 
          get_ollama_connection()
- Define a connection to a local ollama server
- 
          get_ollama_embeddings()
- Get embeddings for a piece of context through an ollama server instance
- 
          get_ollama_model_info()
- Get information about one ollama model
- 
          get_qdrant_connection()
- Get Qdrant connection
- 
          inspect_processing_skill()
- Inspect a specific processing skill
- 
          list_global_functions()
- List global functions
- 
          list_processing_skill_parameters()
- List extra parameters for a given processing skill
- 
          list_processing_skills()
- list the processing skills
- 
          load_context_embeddings_from_feather_files()
- Load Context Embeddings From Feather Files
- 
          load_workflow()
- Load workflow
- 
          make_cosine_similarity_matrix()
- Make Cosine Similarity Matrix
- 
          parse_json_result()
- Parse JSON answer from the LLM
- 
          process_prompts()
- Process Prompts starting from a workflow
- 
          pull_final_answer()
- Pull Final Answer
- 
          qdrant_check_collection_existence()
- Qdrant: Check collection existence
- 
          qdrant_check_connection_validity()
- Qdrant: Check if the Connection is valid
- 
          qdrant_create_new_collection()
- Qdrant: Create new collection
- 
          qdrant_delete_collection()
- Qdrant: Delete collection
- 
          qdrant_delete_points()
- Qdrant: Delete points (vectors)
- 
          qdrant_get_collection_details()
- Qdrant: Get collection details
- 
          qdrant_list_all_collections()
- Qdrant: List all collections
- 
          qdrant_retrieve_point()
- Qdrant: Retrieve a specific point (vector)
- 
          qdrant_search_points()
- Qdrant: Search points (vectors)
- 
          qdrant_upsert_points()
- Qdrant: Upsert points
- 
          request_json_answer()
- Request JSON answer from the LLM
- 
          retrieve_similar_vectors()
- Retrieve Similar Vectors
- 
          save_workflow()
- Save workflow
- 
          set_audience()
- Define a specific audience you want the model to prepare an answer for
- 
          set_connector()
- Set the connector required to operate the workflow.
- 
          set_current_time_and_date_reference()
- Set the current time and date as addition reference
- 
          set_custom_processing_skill()
- Set a custom processing skill (that you created) to give to the workflow.
- 
          set_default_missing_parameters_in_workflow()
- Set Defaults for missing workflow parameters
- 
          set_embedding_model()
- Set the embedding model to be used by the workflow
- 
          set_frequency_penalty()
- Set the frequency penalty of the model used by the flow.
- 
          set_ip_addr()
- Set the IP Address required to connect to an API server.
- 
          set_mode()
- Set the mode of the model used by the workflow.
- 
          set_model()
- Set the LLM model to be used by the workflow
- 
          set_n_predict()
- Set the number of tokens to be predicted (maximum) by the flow.
- 
          set_num_ctx()
- Set the length of the context to be handled by the model
- 
          set_overall_background()
- Set overall background info for your model before an answer is formulated
- 
          set_port()
- Set the port required to connect to the API server.
- 
          set_presence_penalty()
- Set the presence penalty of the model used by the flow.
- 
          set_processing_skill()
- Set the processing skill that you want to give the workflow.
- 
          set_repeat_penalty()
- Set the repeat penalty of the model used by the flow.
- 
          set_seed()
- Set the seed of the model used by the workflow.
- 
          set_style_of_voice()
- Define a specific style of voice that you want the LLM to use when answering
- 
          set_system_prompt()
- Set the system prompt to be used by the model.
- 
          set_temperature()
- Set the temperature of the model used by the workflow.
- 
          split_text_as_paragraphs()
- Split text into paragraphs
- 
          split_text_as_sentences()
- Split text into sentences
- 
          switch_to_workflow()
- Switch to workflow
- 
          test_llamacpp_connection()
- Confirm connection to a Llama.cpp server is working
- 
          test_ollama_connection()
- Confirm connection to ollama is working
- 
          write_vectors_to_feather_file()
- Write Vectors to Feather File