Package index
-
add_api_key_header() - Adds API key header to the qdrant connection for security
-
add_context() - Adds context to be used by the model when answering
-
add_tools_declaration() - Add tools declaration for the LLM to use
-
add_vision_capability() - Add vision capability to the workflow.
-
add_workflow_step() - Add a step (i.e. another workflow) to an existing workflow
-
ai_workflow() - Define AI workflow
-
apply_processing_skill() - Applies a processing skill to the current workflow
-
convert_batch_documents_to_embeddings() - Convert Batch documents to Embeddings
-
convert_embeddings_to_qdrant_format() - Convert embeddings to Qdrant format
-
convert_ollama_completion_response_to_tibble() - Convert an ollama server completion response to a tibble
-
convert_ollama_model_info_response_to_tibble() - Convert ollama response for model info to a tibble
-
convert_ollama_tags_response_to_tibble() - Convert an ollama server tags response to a tibble
-
create_custom_processing_skill() - Create a processing skill template file that can be used to create your own skills
-
display_intermediate_answer() - Display Intermediate Answer
-
execute_workflow() - Execute an AI workflow
-
execute_workflow_on_df() - Execute an AI workflow on a dataframe (with or without a pipe)
-
extract_snippets() - Extract Snippets
-
generate_document_embeddings() - Get embeddings for a piece of context through an ollama server instance020
-
generate_numeric_list() - Generate Numeric List
-
generate_uuid_from_text() - Generate UUID from text
-
get_list_ollama_models() - Get a list of models available from the ollama server
-
get_ollama_chat_completion() - Get chat completion from ollama server
-
get_ollama_completion() - Get a completion from ollama server
-
get_ollama_connection() - Define a connection to a local ollama server
-
get_ollama_embeddings() - Get embeddings for a piece of context through an ollama server instance
-
get_ollama_model_info() - Get information about one ollama model
-
get_qdrant_connection() - Get Qdrant connection
-
inspect_processing_skill() - Inspect a specific processing skill
-
list_global_functions() - List global functions
-
list_processing_skill_parameters() - List extra parameters for a given processing skill
-
list_processing_skills() - list the processing skills
-
load_context_embeddings_from_feather_files() - Load Context Embeddings From Feather Files
-
load_workflow() - Load workflow
-
make_cosine_similarity_matrix() - Make Cosine Similarity Matrix
-
parse_json_result() - Parse JSON answer from the LLM
-
process_prompts() - Process Prompts starting from a workflow
-
pull_final_answer() - Pull Final Answer
-
qdrant_check_collection_existence() - Qdrant: Check collection existence
-
qdrant_check_connection_validity() - Qdrant: Check if the Connection is valid
-
qdrant_create_new_collection() - Qdrant: Create new collection
-
qdrant_delete_collection() - Qdrant: Delete collection
-
qdrant_delete_points() - Qdrant: Delete points (vectors)
-
qdrant_get_collection_details() - Qdrant: Get collection details
-
qdrant_list_all_collections() - Qdrant: List all collections
-
qdrant_retrieve_point() - Qdrant: Retrieve a specific point (vector)
-
qdrant_search_points() - Qdrant: Search points (vectors)
-
qdrant_upsert_points() - Qdrant: Upsert points
-
request_json_answer() - Request JSON answer from the LLM
-
retrieve_similar_vectors() - Retrieve Similar Vectors
-
save_workflow() - Save workflow
-
set_audience() - Define a specific audience you want the model to prepare an answer for
-
set_connector() - Set the connector required to operate the workflow.
-
set_current_time_and_date_reference() - Set the current time and date as addition reference
-
set_custom_processing_skill() - Set a custom processing skill (that you created) to give to the workflow.
-
set_default_missing_parameters_in_workflow() - Set Defaults for missing workflow parameters
-
set_embedding_model() - Set the embedding model to be used by the workflow
-
set_frequency_penalty() - Set the frequency penalty of the model used by the flow.
-
set_ip_addr() - Set the IP Address required to connect to an API server.
-
set_mode() - Set the mode of the model used by the workflow.
-
set_model() - Set the LLM model to be used by the workflow
-
set_n_predict() - Set the number of tokens to be predicted (maximum) by the flow.
-
set_num_ctx() - Set the length of the context to be handled by the model
-
set_overall_background() - Set overall background info for your model before an answer is formulated
-
set_port() - Set the port required to connect to the API server.
-
set_presence_penalty() - Set the presence penalty of the model used by the flow.
-
set_processing_skill() - Set the processing skill that you want to give the workflow.
-
set_repeat_penalty() - Set the repeat penalty of the model used by the flow.
-
set_seed() - Set the seed of the model used by the workflow.
-
set_style_of_voice() - Define a specific style of voice that you want the LLM to use when answering
-
set_system_prompt() - Set the system prompt to be used by the model.
-
set_temperature() - Set the temperature of the model used by the workflow.
-
split_text_as_paragraphs() - Split text into paragraphs
-
split_text_as_sentences() - Split text into sentences
-
switch_to_workflow() - Switch to workflow
-
test_llamacpp_connection() - Confirm connection to a Llama.cpp server is working
-
test_ollama_connection() - Confirm connection to ollama is working
-
write_vectors_to_feather_file() - Write Vectors to Feather File